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Moodle Learning Analytics

“Learning analytics are software algorithms

that are used to predict or detect
unknown aspects of the learning process,

based on historical data and current behavior.”

- Moodle Documentation: Analytics
(https://docs.moodle.org/402/en/Analytics)
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https://docs.moodle.org/402/en/Analytics

New model v

Analytics models ; ;
yt Moodle Learning Analytics
Analysis
Model name Enabled Indicators interval Insights Actions
Courses at risk of not starting 4 v Number of Fromstarttoend  No predictions Actions v
\core_courselanalytics\targetino_teaching @ indicators: 2 (2] available yet
Students at risk of dropping out ¢ No Number of Not yet defined Disabled model Actions v
\core_course\analytics\target\course_dropout indicators: 49 (2]
2]
Students who have not accessed the v Number of Past month @ No predictions Actions v
course recently ¢ indicators: 1 available yet
\core_course\analytics\target\no_recent_accesses
(2}
Students who have not accessed the v Number of One month after No predictions Actions v
course yet ¢ indicators: 1 start @ available yet

\core_course\analytics\target

\no_access_since_course_start @



Edit "Students at risk of dropping out” model

General uUsers Courses Grades

Target

Indicators

Analysis interval

Contexts

Predictions processor

Plugins Appearance server Reports Development

A model configuration

Enabled

Students at nsk of dropping out

(2] (xCoumnocesudmermddm) x Course accessed before start date  x Any write action in the course % Read actions amount

x Completion tracking enabled  x Course potential cognitive depth  x Course potential social breadth  x Assignment cognitive  x Assignment social
x Book cognitive x Book social x Chat cognitive x Chat social x Choice cognitive x Choice social x Database cognitive x Database social

x Feedback cognitive x Feedback social  x Folder cognitive  x Folder social x Forum cognitive x Forum social  x Glossary cognitive

xclossarysochl x IMS pkg cognhive KIMSPRQ!'“"' TS e e e s e e i o ot ye

x Lessonsocial xLTlcognitive xLTisocial xP le social
AT ST TS Mooglle offers model | i

K Werkahon Gogte) (Workahop sada configurations only - no trained

v models!
(7] All previous quarters ¢
Configurations need to be trained
on specific Moodle instances
before they can be used!

e Al

Search v

© Default processor (PHP machine learning backend) €



Students at risk of dropping out

Description Actions
O 1 Augustus Arai C
Prediction details Insights generated
by a trained model
Time predicted Friday, 8 November 2019, 7:00 PM
Analysis interval Monday, 21 October 2019, 12:00 AM to Friday, 8 November 2019, 1:06 PM
Indicators
Course accessed after end date A No
Course accessed before start date A No
Any write action in the course A No

Image by Elizabeth Dalton (2019) (https://docs.moodle.org/402/en/File:prediction_details_38.png)



https://docs.moodle.org/402/en/File:prediction_details_38.png

Analytics / Analytics models / Evaluate model

Evaluate model Results obtained when evaluating
a model configuration

General Users Courses Grades Plugins Apg

Results using All previous quarters analysis interval
Accuracy: 54.2%

The evaluation results varied too much. It is recommended that more data is gathered to ensure the model is valid. X
Evaluation results standard deviation = 0.21623146186227, maximum recommended standard deviation = 0.05

The evaluated model prediction accuracy is not very high, so some predictions may not be accurate. Model score = X
0.54203426965571, minimum score = 0.7

Info

Analysable c1 is not valid for this target: Not enough course activity between the start and the end of the course X

Continue



Learning

Analytics
models are =

: R
not always fair, =] = O
and seldom ~rrir
trustwo r'thy, Riazy, S. and Simbeck, K. (2019)

Predictive Algorithms in

Learning Analytics and their
Fairness.
10.18420/delfi2019_305
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Audits to the rescue!
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Auditing = verifying that Learning Analytics do their job
correctly, well and in compliance with ethical values

— Find opportunities for improvement
— Assure quality
— Promote trust and acceptance

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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How to audit

Target

Indicators

Analysis interval

Contexts

Predictions processor

Students at risk of dropping out

e (n Course accessed after end da!ej x Course accessed before start date  x Any write action in the course  x Read actions amount

% Completion tracking enabled  x Course potential cognitive depth  x Course potential social breadth  x Assignment cognitive  x Assignment social
x Book cognitive x Book social x Chat cognitive x Chat social x Choice cognitive x Choice social x Database cognitive x Database social
x Feedback cognitive x Feedback social  x Folder cognitive  x Folder social  x Forum cognitive x Forum social x Glossary cognitive

x Glossary social  x IMS pkg cognitive  x IMS pkg social x Text and media area cognitive  x Text and media area social  x Lesson cognitive

x Lesson social xLTicognitive xLTlsocial xPage cognitive x Pagesocial xQuizcognitive x Quizsocial x File cognitive x File social
* SCORM cognitive x SCORM social x Survey cognitive x Survey social x URL cognitive x URL social x Wiki cognitive  x Wiki social

x Workshop cognitive  x Workshop social

v

(7] All previous quarters ¢

o W Moodle's dropout
y prediction model

7] Defauit processor (PHP machine fearning backend) ¢




How to audit
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1. Formulate claims

Dropout loreo{ictions do not show bias
against minori’cj groups.

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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How to audit

il

2. Gather evidence to prove or disprove claims

source code

core\analyti
"\core\analyti
‘\core_course
‘\core_course

documentation system logs

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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How to audit
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3. Validate evidence to conclude whether claims are fulfilled.

Todo: Check if dropout predictions are equally accurate
for both minority and majority groups.

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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ONE DOES NOT SIMPLY

o Vs

#

AUDIT MOODLE LEARNING ANALYTICS




Do dropout predictions show bias
agains‘t minori'tj groups?

Problem

To validate some claims Sap majority () minority

we need to conduct
data-based tests. I_ Input I_ input

|||l predictions m predictions

#MootGlobal23 | f




Problem L] No suitable test data is

openly available, and due
to the dependence on
user activity data, it can
not be mocked.

Fernsel, L. and Simbeck, K. (Forthcoming)
Assessing the Auditability of Learning Analytics
Systems: A Framework and Case Study.
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Problem The evaluation mode only

evaluates configurations
and models trained on
another site. Models
trained during evaluation

are not persisted.

Fernsel, L. and Simbeck, K. (Forthcoming)
Assessing the Auditability of Learning Analytics
Systems: A Framework and Case Study.
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Problem The evaluation mode

does not make available
raw predictions, but
returns only few
aggregated quality

metrics.

Fernsel, L. and Simbeck, K. (Forthcoming)
Assessing the Auditability of Learning Analytics
Systems: A Framework and Case Study.
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LaLA
- Let’s audit Learning
Analytics

A plugin to enable

audits of Moodle
Learning Analytics

% bit.ly/23lala



http://bit.ly/23lala

Enable uploading and selection of data.

Clearly differentiate between model
configurations and trained models.

Persist models trained by LaLA.

Provide predictions.

#MootGlobal23 | 0



There's more!

|||l Provide extensive evidence for download

« Model input with features and truth values
* Input splitinto training and test data

« Datarelated to the model input,
e.g. (@anonymized) user data

#MootGlobal23 | 0



There's even more!

il

Privacy: Anonymize all data so it can be used and downloaded safely.

Ensure traceability: Persist model configurations that are updated or deleted
in the Moodle Learning Analytics settings.

Enable third-party audits: Allow users to be assigned the role of “auditor”
with capabilities limited to LaLA.

Example analysis: Demonstrate evidence analysis with a Jupyter Notebook

#MootGlobal23 | @



How to use LalLA?
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1. Formulate claims

Dropout loreo(ic’cions do not show bias
agains’c minoritj groups.

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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How to use LalLA?
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2. Gather evidence with LaLA
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Ay courses  Site admnistration a

Analytics | Let()s sudit Leaming Analytics

Let(')s audit Learning Analytics

General Users Courses Grades Pugins Appearance Server More v

“Let')s audt Learning Analytics” (LalA) enables the retrieval of evidence for your awde of a Moodle Learning
Analytes model, Mode! configurabons continue to be managed by Moodle administrators on the Loarming Aralytics

page
A | model
Conﬁgllo Creste new verson nulunlamnl?y' s

configuration
© o s e to be audited.

& mibackend_php * quaners
= ol contens
M coretanalyncsundicarorany_access_ater_end, | display morn

conﬁgl’l creste new verson sutomatically @
& course_dropout M =udern_ersoiments
= mibackend_php ** one_week_afier_start
& ol coneens

[ cormanalyticsindcamrany_access_after_end.  displiy more




Ay courses  Sae admmistration

© Leam more about using LaLA in the Quick Start guide.

conﬁgl’o Cresle new version | sutomatically S
© course_sropout M studerz_ervolmens
& mibackend_php ** quarers
B ot contesns
& conmanalyncsundcaronany_access_afer_onc,  dlasilay moee
COl‘lﬁgm cresls new verson automatcally
@ course_aropout M suders_encolmenns
& mibackend_php * one_week_aler_sian
& o conemes
1% vorsvenatycsindcaionanty_access_atm_end  dsgitey more
config6/0 create new vorsion | aisomatically S
@ covise_compieton A suders_snesiments
&= mibsck=nd phgp ** quaners accum
& all contexts.
¥ coretanalytcsindcatorany cowrse_acoess.  thaplay o
config8/0 | create new verson | automatically @

Create a new
model version.



yoourses  Sae admeesyaton a

Oonﬁglll Create neww verpon | sSomascally ©
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ty courses  Sile admnistraion

configl/l
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Alternatively
to the
automatic
model version
creation,
upload or
select data
manually.
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How to use LalLA?

(il

3. Validate evidence to conclude whether claims are fulfilled.

Todo: Check if dropout predictions are equally accurate
for both minority and majority groups.

Fernsel, L. and Simbeck, K. (Forthcoming) Assessing the Auditability of
Learning Analytics Systems: A Framework and Case Study.
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import pandas as pd Import the
evidence

d_predictions = pd.read_csv("data/predictions.csv")
d_related = pd.read_csv("data/related.csv")



d_predictions.head()
Executed at 2023.09.08 09:24:43 in 20ms

5 rOWS v 5 rows x 3 columns pd.DataFrame »
¢ sampleid : target ¢ prediction *
8 809237-0 0 1
1 745806-0 0 0
2 1158255-0 0 0
3 506686-0 0 0
4 1977658-0 0) 0

d_related.head()
Executed at 2023.09.08 09:24:43 in 12ms

“-

P L I R <> |

5 rows v 5 rows x 2 columns pd.DataFrame »
id ¢+ lang =

809237 en

745806 de

1158255 de

506686 de

1977658 de

What the
evidence looks
like...



group = 'lang'

d_predictions['id'] = d_predictions['sampleid'].str.split('-').str[0]

d_predictions['id'] = d_predictions['id'].astype(int)
d_related['id'] = d_related['id'].astype(int)

id_to_group = d_related.set_index('id')[group].to_dict()

: : W : Select which
d_predictions['lang'] = d_predictions['id'].map(id_to_group :
Executed at 2023.09.08 09:24:43 in 217ms propertles yOU

. need from the
d_predictions.head()

Executed at 2023.09.08 09:24:43 in 172ms related data
5 rows v 5 rows x 5 columns pd.DataFrame » csh and e them
¢ sampleid : target ¢ prediction * id ¢ lang @ th.e .
predictions.
0 809237-0 0 1 809237 en
1 745806-0 0 0 745806 de
2 1158255-0 0 0 1158255 de
3 506686-0 0 0 506686 de
4 1977658-0 0 0 1977658 de



from sklearn.metrics import accuracy_score
from fairlearn.metrics import MetricFrame

mf = MetricFrame(
metrics={ "accuracy": accuracy_score },
y_true=d_predictions['target'],
y_pred=d_predictions['prediction'],
sensitive_features=d_predictions['lang'])

Calculate the
accuracy per

group.



mf.by_group.plot.bar(

)

subplots=True,
layout=[1, 2],
legend=False,

figsize=[6, 2]

Executed at 2023.09.08 09:24:44 in 427ms

array([[<Axes: title={'center': 'accuracy'}, xlabel='lang'>,

<Axes: xlabel='lang'>]], dtype=object)

accuracy

0.8

0.6 1

0.4 1

0.2 1

0.0 -

lang

Plot the
accuracy per

group.



print('Difference:"')
print(mf.difference())

print('Ratio:')

print(mf.ratio())
Executed at 2023.09.08 09:29:24 in 27ms

Difference:

accuracy 0.023474
dtype: floatéb4
Ratio:

accuracy 0.969565
dtype: floaté4

Calculate the
accuracy
difference and
ratio.



Conclusion

e |earning Analytics models are not always fair, nor trustworthy.
Therefore, we need to audit them!

e However, auditing of Moodle Learning Analytics is currently hindered
by a lack of data, low traceability and non-persistence of trained
models and their predictions in the evaluation mode.

e The Moodle plugin LaLA persists and retrieves evidence including
model predictions.
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Outlook

had

There's STILL no data openly available
— Provide two anonymized data sets both as valid model input
(csv) as well as importable Moodle course backup file (mbz)

LaLA always uses the PHP Logistic Regression model
— Enable the use of other implementations and backends

LaLA STILL only evaluates model configurations
— Allow users to skip training and directly upload or select data
for testing
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Outlook

Loss of information due to anonymization
A Implement a more sophisticated anonymization algorithm such
as |-diversity
axm | Potentially high storage use and server work load
@ | — Reduce training and test evidence to lists of sample ids

— Ask beforehand which evidence should be stored
— Enable command line execution

#MootGlobal23 | %

'.' ‘.i
| 4

.

‘ | 4
£ 4

|
L \

B

| N

nRRk
b4 4+ <
b4+ <

i
W\




Call To Action: Your turn!
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Audit your models to increase trust and thereby
acceptance into Learning Analytics.

LaLA can help with gathering evidence for your audit.

Give feedback, share ideas, document bugs, publish
your anonymized Moodle data and maybe even join
the development.
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